Inference in conditional probability logic
نویسندگان
چکیده
An important field of probability logic is the investigation of inference rules that propagate point probabilities or, more generally, interval probabilities from premises to conclusions. Conditional probability logic (CPL) interprets the common sense expressions of the form “if . . . , then . . . ” by conditional probabilities and not by the probability of the material implication. An inference rule is probabilistically informative if the coherent probability interval of its conclusion is not necessarily equal to the unit interval [0, 1]. Not all logically valid inference rules are probabilistically informative and vice versa. The relationship between logically valid and probabilistically informative inference rules is discussed and illustrated by examples such as the modus ponens or the affirming the consequent. We propose a method to evaluate the strength of CPL inference rules. Finally, an example of a proof is given that is purely based on CPL inference rules.
منابع مشابه
Framing human inference by coherence based probability logic
We take coherence based probability logic as the basic reference theory to model human deductive reasoning. The conditional and probabilistic argument forms are explored. We give a brief overview of recent developments of combining logic and probability in psychology. A study on conditional inferences illustrates our approach. First steps towards a process model of conditional inferences conclu...
متن کاملA Measure-Free Approach to Conditioning
In an earlier paper, a new theory of measurefree"conditional"objects was presented. In this paper, emphasis is placed upon the motivation of the theory. The central part of this motivation is established through an example involving a knowledge-based system. In order to evaluate combination of evidence for this system, using observed data, auxiliary at tribute and diagnosis variables, and infer...
متن کاملOn Prototypical Indifference and Lifted Inference in Relational Probabilistic Conditional Logic
Semantics for formal models of probabilistic reasoning rely on probability functions that are defined on the interpretations of the underlying classical logic. When this underlying logic is of relational nature, i. e. a fragment of first-order logic, then the space needed for representing these probability functions explicitly is exponential in both the number of predicates and the number of do...
متن کاملFuzzy Causal Probabilistic Networks - a New Ideal and Practical Inference Engine
Fuzziness and randomness are two distinct components of uncertainty. While fuzzy sets are a rigorous softening of random sets, many of the operations de ned in fuzzy logic lack a complete formalism, and are not strongly supported by experimental evidence. Causal Probabilistic Networks (CPN) or Bayesian networks provide an ultimately exible inference mechanism based on Bayesian probability princ...
متن کاملThe Probability of Conditionals : The Psychological
The two main psychological theories of the ordinary conditional were designed to account for inferences made from assumptions, but few premises in everyday life can be simply assumed true. Useful premises usually have a probability that is less than certainty. But what is the probability of the ordinary conditional and how is it determined? We argue that people use a two stage Ramsey test that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kybernetika
دوره 42 شماره
صفحات -
تاریخ انتشار 2006